\begin{tabbing} 1. $T$ : Type \\[0ex]2. $L_{1}$ : $T$ List \\[0ex]3. $L_{2}$ : $T$ List \\[0ex]4. $L$ : $T$ List \\[0ex]5. $x$ : $T$ \\[0ex]6. $\forall$$i$, $j$:$\mathbb{N}$. ($i$ $<$ $\parallel$$L$$\parallel$) $\Rightarrow$ ($j$ $<$ $\parallel$$L$$\parallel$) $\Rightarrow$ ($\neg$($i$ = $j$)) $\Rightarrow$ ($\neg$($L$[$i$] = $L$[$j$])) \\[0ex]7. $f_{1}$ : \{0..$\parallel$$L_{1}$ @ [$x$]$\parallel^{-}$\}$\rightarrow$\{0..$\parallel$$L$$\parallel^{-}$\} \\[0ex]8. increasing($f_{1}$;$\parallel$$L_{1}$ @ [$x$]$\parallel$) \\[0ex]9. $\forall$$j$:\{0..$\parallel$$L_{1}$ @ [$x$]$\parallel^{-}$\}. ($L_{1}$ @ [$x$])[$j$] = $L$[($f_{1}$($j$))] \\[0ex]10. $f$ : \{0..($\parallel$$L_{2}$$\parallel$+1)$^{-}$\}$\rightarrow$\{0..$\parallel$$L$$\parallel^{-}$\} \\[0ex]11. increasing($f$;$\parallel$$L_{2}$$\parallel$+1) \\[0ex]12. $\forall$$j$:\{0..($\parallel$$L_{2}$$\parallel$+1)$^{-}$\}. [$x$ / $L_{2}$][$j$] = $L$[($f$($j$))] \\[0ex]$\vdash$ $\exists$\=$f$:\{0..$\parallel$$L_{1}$ @ [$x$ / $L_{2}$]$\parallel^{-}$\}$\rightarrow$\{0..$\parallel$$L$$\parallel^{-}$\}\+ \\[0ex](increasing($f$;$\parallel$$L_{1}$ @ [$x$ / $L_{2}$]$\parallel$) \\[0ex]\& ($\forall$$j$:\{0..$\parallel$$L_{1}$ @ [$x$ / $L_{2}$]$\parallel^{-}$\}. ($L_{1}$ @ [$x$ / $L_{2}$])[$j$] = $L$[($f$($j$))])) \- \end{tabbing}